Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Article in English | MEDLINE | ID: covidwho-1373495

ABSTRACT

The hallmark of severe COVID-19 is an uncontrolled inflammatory response, resulting from poorly understood immunological dysfunction. We hypothesized that perturbations in FoxP3+ T regulatory cells (Treg), key enforcers of immune homeostasis, contribute to COVID-19 pathology. Cytometric and transcriptomic profiling revealed a distinct Treg phenotype in severe COVID-19 patients, with an increase in Treg proportions and intracellular levels of the lineage-defining transcription factor FoxP3, correlating with poor outcomes. These Tregs showed a distinct transcriptional signature, with overexpression of several suppressive effectors, but also proinflammatory molecules like interleukin (IL)-32, and a striking similarity to tumor-infiltrating Tregs that suppress antitumor responses. Most marked during acute severe disease, these traits persisted somewhat in convalescent patients. A screen for candidate agents revealed that IL-6 and IL-18 may individually contribute different facets of these COVID-19-linked perturbations. These results suggest that Tregs may play nefarious roles in COVID-19, by suppressing antiviral T cell responses during the severe phase of the disease, and by a direct proinflammatory role.


Subject(s)
COVID-19/etiology , T-Lymphocytes, Regulatory/physiology , Adult , Aged , CD4-Positive T-Lymphocytes/virology , Female , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Profiling , Gene Expression Regulation , Humans , Inflammation/metabolism , Inflammation/virology , Interleukin-18/genetics , Interleukin-18/metabolism , Interleukin-2 Receptor alpha Subunit/genetics , Interleukin-2 Receptor alpha Subunit/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Lymphocytes, Tumor-Infiltrating/physiology , Male , Middle Aged , Severity of Illness Index , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/virology , Transcription Factors/genetics , Transcription Factors/metabolism
2.
FEBS J ; 288(24): 7123-7142, 2021 12.
Article in English | MEDLINE | ID: covidwho-1085289

ABSTRACT

The adaptive immune system has the enormous challenge to protect the host through the generation and differentiation of pathogen-specific short-lived effector T cells while in parallel developing long-lived memory cells to control future encounters with the same pathogen. A complex regulatory network is needed to preserve a population of naïve cells over lifetime that exhibit sufficient diversity of antigen receptors to respond to new antigens, while also sustaining immune memory. In parallel, cells need to maintain their proliferative potential and the plasticity to differentiate into different functional lineages. Initial signs of waning immune competence emerge after 50 years of age, with increasing clinical relevance in the 7th-10th decade of life. Morbidity and mortality from infections increase, as drastically exemplified by the current COVID-19 pandemic. Many vaccines, such as for the influenza virus, are poorly effective to generate protective immunity in older individuals. Age-associated changes occur at the level of the T-cell population as well as the functionality of its cellular constituents. The system highly relies on the self-renewal of naïve and memory T cells, which is robust but eventually fails. Genetic and epigenetic modifications contribute to functional differences in responsiveness and differentiation potential. To some extent, these changes arise from defective maintenance; to some, they represent successful, but not universally beneficial adaptations to the aging host. Interventions that can compensate for the age-related defects and improve immune responses in older adults are increasingly within reach.


Subject(s)
Aging/immunology , COVID-19/immunology , Memory T Cells/immunology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Regulatory/immunology , Adaptive Immunity , Aged , Aging/genetics , COVID-19/genetics , COVID-19/pathology , COVID-19/virology , Cell Differentiation , Cell Proliferation , Dual Specificity Phosphatase 6/genetics , Dual Specificity Phosphatase 6/immunology , Gene Expression Regulation , Humans , Memory T Cells/virology , MicroRNAs/genetics , MicroRNAs/immunology , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/immunology , Positive Regulatory Domain I-Binding Factor 1/genetics , Positive Regulatory Domain I-Binding Factor 1/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , T-Lymphocytes, Cytotoxic/virology , T-Lymphocytes, Helper-Inducer/virology , T-Lymphocytes, Regulatory/virology
3.
J Cell Physiol ; 236(7): 5325-5338, 2021 07.
Article in English | MEDLINE | ID: covidwho-995973

ABSTRACT

In novel coronavirus disease 2019 (COVID-19), the increased frequency and overactivation of T helper (Th) 17 cells and subsequent production of large amounts of proinflammatory cytokines result in hyperinflammation and disease progression. The current study aimed to investigate the therapeutic effects of nanocurcumin on the frequency and responses of Th17 cells in mild and severe COVID-19 patients. In this study, 40 severe COVID-19 intensive care unit-admitted patients and 40 patients in mild condition were included. The frequency of Th17 cells, the messenger RNA expression of Th17 cell-related factors (RAR-related orphan receptor γt, interleukin [IL]-17, IL-21, IL-23, and granulocyte-macrophage colony-stimulating factor), and the serum levels of cytokines were measured in both nanocurcumin and placebo-treated groups before and after treatment. A significant decrease in the number of Th17 cells, downregulation of Th17 cell-related factors, and decreased levels of Th17 cell-related cytokines were found in mild and severe COVID-19 patients treated by nanocurcumin compared to the placebo group. Moreover, the abovementioned parameters were significantly decreased in the nanocurcumin-treated group after treatment versus before treatment. Curcumin could reduce the frequency of Th17 cells and their related inflammatory factors in both mild and severe COVID-19 patients. Hence, it could be considered as a potential modulatory compound in improving the patient's inflammatory condition.


Subject(s)
COVID-19 Drug Treatment , Curcumin/therapeutic use , Immunomodulation/drug effects , Nanoparticles/therapeutic use , Th17 Cells/drug effects , Adult , Cytokines/metabolism , Female , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Male , Middle Aged , Nanoparticles/administration & dosage , SARS-CoV-2/drug effects , Severity of Illness Index , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/virology , Th17 Cells/metabolism
4.
Bioessays ; 43(3): e2000200, 2021 03.
Article in English | MEDLINE | ID: covidwho-917077

ABSTRACT

As the number of infections and mortalities from the SARS-CoV-2 pandemic continues to rise, the development of an effective therapy against COVID-19 becomes ever more urgent. A few reports showing a positive correlation between BCG vaccination and reduced COVID-19 mortality have ushered in some hope. BCG has been suggested to confer a broad level of nonspecific protection against several pathogens, mainly via eliciting "trained immunity" in innate immune cells. Secondly, BCG has also been proven to provide benefits in autoimmune diseases by inducing tolerogenicity. Being an acute inflammatory disease, COVID-19 requires a therapy that induces early priming of anti-viral immune responses and regulates aberrant hyperactivity of innate-immune cells. Here, we hypothesize that BCG can offer reliable spatiotemporal protection from COVID-19 by triggering trained immunity and tolerogenesis, through multiple cellular pathways. We propose further research on BCG-mediated immunoprotection, especially in vulnerable individuals, as a strategy to halt the progress of the SARS-CoV-2 pandemic. Also see the video abstract here https://youtu.be/P2D2RXfq6Vg.


Subject(s)
BCG Vaccine/therapeutic use , COVID-19/prevention & control , Cytokine Release Syndrome/prevention & control , Immune Tolerance/drug effects , Immunity, Innate/drug effects , T-Lymphocytes, Regulatory/drug effects , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , B-Lymphocytes/virology , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/virology , Cytokines/genetics , Cytokines/immunology , Gene Expression Regulation , Humans , Immunologic Memory/drug effects , Pathogen-Associated Molecular Pattern Molecules/immunology , Pathogen-Associated Molecular Pattern Molecules/metabolism , RNA, Viral/genetics , RNA, Viral/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/virology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/virology , Vaccination/methods
SELECTION OF CITATIONS
SEARCH DETAIL